

${\bf SIDDHARTH\ GROUP\ OF\ INSTITUTIONS::\ PUTTUR\ (AUTONOMOUS)}$

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Mathematical Foundation of Computer Science

Course & Branch: MCA

(25MC9101)

Year & Sem: I-MCA & I-Sem Regulation: R25

UNIT –I THE FOUNDATIONS LOGIC AND PROOFS

1	a)	Explain the connectives and their truth tables.	[L2][CO1]	[6M]
	b)	Construct the truth table for the following formula $(P \land \neg Q) \rightarrow R$.	[L3][CO1]	[6M]
2	a)	Construct the truth table for the following formula $\neg(\neg p \lor \neg q)$	[L3][CO1]	[6M]
	b)	Define converse, inverse contra positive with an example.	[L1][CO1]	[6M]
3	a)	Define NAND, NOR & XOR and give their truth tables.	[L1][CO1]	[6M]
	b)	Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent by using	[L2][CO1]	[6M]
		truth tables.		
4	a)	Prove that $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology.	[L3][CO1]	[6M]
	b)	Show that the value of $(P \rightarrow Q) \land (P \rightarrow R)$ is logically equivalent to	[L2][CO1]	[6M]
		$P \rightarrow (Q \land R).$		
5	a)	Define Predicates, simple and compound statement function with example.	[L1][CO1]	[6M]
	b)	Define Quantifiers and types of Quantifiers with examples.	[L1][CO1]	[6M]
6	a)	Verify the validity of the following arguments: Lions are dangerous animals,	[L3][CO1]	[6M]
		There are lions. Therefore, there are dangerous animals.		
	b)	Show that $(\exists x) M(x)$ follows logically from the premises	[L2][CO1]	[6M]
		$(\forall x)(H(x) \rightarrow M(x)) \ and \ (\exists x)H(x)$		
7	a)	Prove that $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$	[L3][CO1]	[6M]
	b)	Explain about Nested Quantifiers with example.	[L2][CO1]	[6M]
8	a)	Prove that $(\forall x)(P(x) \to (Q(y) \land R(x))), (\exists x)P(x) \Rightarrow Q(y) \land (\exists x)(P(x) \land R(x))$	[L3][CO1]	[6M]
	b)	Prove that $(n + 1)^3 \ge 3^n$ if n is a positive integer with $n \le 4$. By using method	[L2][CO1]	[6M]
		of exhaustion		
9		Use indirect method of proof to show that	[L2][CO1]	[12M]
		$(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$		
10	a)	Prove that if n is an integer, then $n^2 \ge n$. by proof by cases method	[L2][CO1]	[6M]
	b)	Define Forward and Backward Reasoning with examples	[L1][CO1]	[6M]

UNIT -II

BASIC STRUCTURES, SETS, FUNCTIONS, SEQUENCES, SUMS, MATRICES AND RELATIONS

1	a)	Define (i) Equal sets (ii) Empty set (iii) Subset (iv) The size of a set	[L1][CO2]	[6M]
		(v) Power set (vi) Cartesian Product of two sets		
	b)	5 1	[L2][CO2]	[6M]
		(i) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (ii) $\overline{A \cup B} = \overline{A} \cap \overline{B}$		
2	a)	Define a function and write the types of functions	[L1][CO2]	[6M]
	b)	If f: R o R such that $f(x) = 2x + 1$ and $g: R \to R$ such that $g(x) = \frac{x}{3}$	[L3][CO2]	[6M]
		then verify that $(gof)^{-1} = f^{-1}og^{-1}$.		
3	a)	then verify that $(gof)^{-1} = f^{-1}og^{-1}$. Let $f(x) = x + 3$, $g(x) = x - 4$ and $h(x) = 5x$ are functions from $R \to R$ where	[L3][CO2]	[6M]
		R is the set of real numbers. Find $f \circ (g \circ h)$ and $(f \circ g) \circ h$.		
	b)	Find the inverse of the following functions:	[L3][CO2]	[6M]
	D)	$(i)f(x) = \frac{10}{\sqrt[5]{7 - 3x}} (ii)f(x) = 4e^{(6x+2)}$		
4	a)	Find (i) The Fibonacci numbers f_2 , f_3 , f_4 , f_5 , and f_6 .	[L3][CO2]	[6M]
		(ii) Formulae for the sequences with the following first five terms:		
	1. \	(a) 1, 1/2, 1/4, 1/8, 1/16 (b) 1, 3, 5, 7, 9 (c) 1, -1, 1, -1, 1.	II 311 CO 31	[(N
	b)		[L3][CO2]	[6M]
		$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r - 1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$		
		$\sum_{i=0}^{n} \frac{ur^{i} - 1}{(n+1)a} \text{if } r=1$		
5	a)	Show that if A and B are countable sets, then $A \cup B$ is also countable.	[L2][CO2]	[6M]
3	a)	= / 0=		[UIVI]
	b)	Find the Boolean product AB and BA, where $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	[L3][CO2]	[6M]
6		Let $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$. Then find A^4 by using Boolean product	[L3][CO2]	[12M]
7	a)	Define Relation? Write the properties of relations.	[L1][CO2]	[6M]
	b)	Let $A=\{0,1,2,3,4\}$. Show that the relation	[L3][CO2]	[6M]
	,	$R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}$ is an equivalence relation.	[0][00-]	[]
8	a)	Define an equivalence relation? If R be a relation in the set of integers Z	[L1][CO2]	[6M]
		defined by $R = \{(x, y) : x \in \mathbb{Z}, y \in \mathbb{Z}, (x - y) \text{ is divisible by } 6\}$. Then prove that R		
		is an equivalence relation.		
	b)		[L2][CO2]	[6M]
		if "x divides y", written x/y. Then		
		i) Write down R as a set of ordered pairs. ii) Draw the diagraph of R.	FF 43FCO21	[12]
9		Define transitive closures. Let $A = \{1,2,3\}$ and $R = \{(1,2),(2,3),(3,1)\}$. Find the reflexive, symmetric and transitive closures of R, using composition of	[L1][CO2]	[12M]
40		matrix relation of R.	FY A35 00 45	5403.53
10		Let A be a given finite set and P(A) its power set. Let \subseteq be the inclusion	[L2][CO2]	[12M]
		relation on the elements of P(A). Draw the Hasse diagram of (P(A), \subseteq) for		
		(i) $A = \{ a \}$ (ii) $A = \{ a,b \}$ (iii) $A = \{ a,b,c \}$ (iv) $A = \{ a,b,c,d \}$.		

UNIT –III ALGORITHMS, INDUCTION AND RECURSION

1	a)	Write the properties of algorithms	[L1][CO3]	[6M]
	b)	Define Linear search algorithm and Binary search algorithm	[L1][CO3]	[6M]
2	a)	Explain Bubble sort and Insertion sort.	[L3][CO3]	[6M]
	b)	Use the bubble sort to put 3, 2, 4, 1, 5 into increasing order	[L2][CO3]	[6M]
3	a)	Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5 in increasing	[L2][CO3]	[6M]
		order.		
	b)	Define Big-O Notation with an example	[L1][CO3]	[6M]
4	a)	Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where $a_0, a_1, \dots, a_{n-1}, a_n$ are	[L3][CO3]	[6M]
		real numbers. Then show that $f(x)$ is $O(x^n)$.		
	b)	Define Big-Omega and Big-Theta Notation with an example	[L1][CO3]	[6M]
5	a)	Define Time Complexity.	[L1][CO3]	[2M]
	b)	State and prove The Halting Problem.	[L3][CO3]	[10M]
6	a)	Show that if n is a positive integer, then $1 + 2 + 3 + + n = \frac{n(n+1)}{2}$ by	[L2][CO4]	[6M]
		using mathematical induction method		
	b)	Use mathematical induction to show that $1+2+2^2++2^n=$	[L2][CO4]	[6M]
	~)	$2^{n+1}-1$	[22][001]	[01/2]
7	a)	Explain mathematical induction and strong induction.	[L3][CO4]	[6M]
	b)	Show that if n is an integer greater than 1, then n can be written as the	[L2][CO4]	[6M]
		product of primes. By using strong induction method		
8	a)	State and prove division algorithm. By using well-ordering property	[L1][CO4]	[6M]
	b)	Define Recursively defined function, Suppose that f is defined recursively by	[L1][CO4]	[6M]
		f(0)=3, $f(n+1)=2f(n)+3$, then find $f(1)$, $f(2)$, $f(3)$ and $f(4)$.		
9	a)	Show that when ever $n \geq 3$, $f_n > \alpha^{n-2}$, where $\alpha = \frac{(1+\sqrt{5})}{2}$	[L2][CO4]	[6M]
	b)	Define set of rooted trees, extended binary trees, full binary trees recursively	[L1][CO4]	[6M]
10	a)	If T is a full binary tree, then show that $n(T) \leq 2^{h(T)+1} - 1$ by using	[L3][CO4]	[6M]
		structural induction		
	b)	Define Recursive algorithm. Give a recursive algorithm for computing n!,	[L1][CO4]	[6M]
		where n is a non-negative integer.		

UNIT -IV

DISCRETE PROBABILITY AND ADVANCED COUNTING TECHNIQUES

1	a)	A class consists of 6 girls and 10 boys. If a committee of 3 is chosen	[L1][CO5]	[6M]
		at random from the class, find the Probability that (i) 3 boys are selected		
		(ii) Exactly 2 girls are selected.		
	b)	If three coins are tossed, Find the probability of getting	[L1][CO5]	[6M]
		i) 3 heads ii) 2 heads iii) no heads.	FY =35 GO =3	5 63 53
2	a)	Two cards are selected at random from 10 cards numbered 1 to 10. Find the	[L5][CO5]	[6M]
		probability that the sum is even if (i) The two cards are drawn together. (ii) The two cards drawn one after other with replacement.		
	b)		[L5][CO5]	[6M]
	D)	Determine (i) $P(B/A)$ (ii) $P(A/B^c)$ if A and B are events with $P(A) = \frac{1}{3}$,		[UIVI]
		$P(B) = \frac{1}{4}, \ P(A \cup B) = \frac{1}{2}.$		
3		Two dice are thrown. Let A be the event that the sum of the point on the	[L1][CO5]	[12M]
		faces is 9. Let B be the event that at least one number is 6.		
		Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$ (v) $P(A \cap B^c)$		
4		In a certain college 25% of boys and 10% of girls are studying mathematics.	[L1][CO5]	[12M]
		The girls Constitute 60% of the student body. (a) What is the probability that mathematics is being studied?		
		(b) If a student is selected at random and is found to be studying		
		mathematics, find the probability that the student is a girl?		
		(c) a boy		
5		A random variable X has the following probability function	[L5][CO5]	[12M]
		X 0 1 2 3 4 5 6 7		
		$P(x) = 0$ $K = 2K = 2K = 3K = K^2 = 2K^2 = 7K^2 + K$		
		Determine (i) K (ii) Evaluate $P(X \ge 6)$ and $P(0 < X < 5)$ (iii) if $P(X \le K) > 1/2$,		
		find the minimum value of K (iv) variance.		
6	a)	Solve the recurrence relation $a_n + a_{n-1} - 6a_{n-2} = 0$, for $n \ge 2$, given that	[L3][CO5]	[6M]
		$a_0 = -1$ and $a_1 = 8$.		
	b)		[L3][CO5]	[6M]
7		Solve the recurrence relation	[L3][CO5]	[6M]
		$a_n + 4a_{n-1} + 4a_{n-2} = 8 $ for $n \ge 2$, and $a_0 = 1, a_1 = 2$.		
8	a)	Solve the recurrence relation	[L3][CO5]	[6M]
		$a_{n+2} + 3a_{n+1} + 2a_n = 3^n$ for $n \ge 0$ given $a_0 = 0, a_1 = 1$.		
	b)	Solve the following $y_{n+2} - y_{n+1} - 2y_n = n^2$	[L3][CO5]	[6M]
9		Find a generating function for the recurrence relation	[L1][CO5]	[12M]
		$a_{n+2} - 3a_{n+1} + 2a_n = 0$, $n \ge 0$ and $a_0 = 1$, $a_1 = 6$. Hence solve the relation.		
10	a)	In a sample of 100 logic chips, 23 have a defect D_1 ,26 have a defect D_2 , 30	[L3][CO5]	[6M]
		have a defect D_3 , 7 have defects D_1 and D_2 , 8 have defects D_1 and D_3 , 10		
		have defects D_2 and D_3 and 3 have all the three defects. Find the number of		
		chips having (i) at least one defect,(ii) no defect.		
	b)	Find how many integers between 1 and 60 that are divisible by 2 not by 3	[L3][CO5]	[6M]
		and not by 5. Also determine the number of integers divisible by 5 not by 2,		
		not by 3.		

UNIT -V

GRAPHS

1	a)	Show that the maximum number of edges in a simple graph with n vertices	[L2][CO6]	[6M]
		is $\frac{n(n-1)}{2}$.		
		$\frac{18}{2}$.		
	b)	How many vertices will the graph contains 6 edges and all vertices of degree 3	[L2][CO6]	[6M]
2	a)	How many edges does a graph have if it has vertices of degree 4, 3, 3, 2, 2?	[L2][CO6]	[6M]
		Draw such a graph.		
	b)	If G is non-directed graph with 12 edges, Suppose that G has 6 vertices of	[L3][CO6]	[6M]
		degree 3 and the rest have degree less than 3. Determine the minimum number		
		of vertices.		
3	a)	Explain about complete graph and Bipartite graph with an example.	[L2][CO6]	[6M]
	b)	Define (i) Planar and non-planar graph (ii) Regular graph with example.	[L1][CO6]	[6M]
4	a)	Define the following graph with one suitable example for each graphs	[L1][CO6]	[6M]
		(i) sub graph (ii) induced sub graph (iii) spanning sub graph		
	b)	Explain graph coloring and chromatic number give an example.	[L2][CO6]	[6M]
5	<u>a)</u>	Define (i) Isomorphic graph (ii) Multiple graph with example.	[L1][CO6]	[6M]
	b)	Let G be a 4 – Regular connected planar graph having 16 edges. Find the	[L3][CO6]	[6M]
		number of regions of G.	IT ATT CO.C.	F () F :
6	a)	Show that the two graphs shown in figure are isomorphic?	[L2][CO6]	[6M]
		a1 a ←		
		G_1 2 G_2		
		· · · · · · · · · · · · · · · · · · ·		
		d C		
	b)	Show that in any graph the number of odd degree vertices is even .	[L2][CO6]	[6M]
7	<u>a)</u>	Write difference between Hamiltonian graphs and Euler graphs.	[L1][CO6]	[6M]
	b)	Draw the graph represented by given Adjacency matrix	[L1][CO6]	[6M]
	·			
		$ \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix} $ (ii) $ \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} $		
		$\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$		
8	a)	Show that the two graphs shown below are isomorphic?	[L2][CO6]	[6M]
		(b) a' b'		
		le'		
		d d		
		The state of the s		
	b)	A connected planar graph has 10 vertices each of degree 3. Find the number	[L3][CO6]	[6M]
	-	of regions		
9	a)	Explain indegree and out degree of a graph. Also explain about the adjacency	[L2][CO6]	[6M]
		matrix representation of graphs. Illustrate with an example?		
	b)	Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges	[L2][CO6]	[6M]
		does the graph have ?		
10	a)	State Euler's formula and Handshaking theorem	[L1][CO6]	[6M]
			I	

b)	Find the number of vertices, number of edges and the number of regions for the following graph and verify the Euler's formula	[L3][CO6]	[6M]
	v_1 v_2 v_3 v_4		

Prepared by: T J SHIVAKUMAR ASSISTANT PROFESOR DEPT. OF MATHEMATICS